Package: randomForestVIP 0.1.3.9000

randomForestVIP: Tune Random Forests Based on Variable Importance and Plot Results

Functions for assessing variable relations and associations prior to modeling with a Random Forest algorithm (although these are relevant for any predictive model). Metrics such as partial correlations and variance inflation factors are tabulated as well as plotted for the user. A function is available for tuning the main Random Forest hyper-parameter based on model performance and variable importance metrics. This grid-search technique provides tables and plots showing the effect of the main hyper-parameter on each of the assessment metrics. It also returns each of the evaluated models to the user. The package also provides superior variable importance plots for individual models. All of the plots are developed so that the user has the ability to edit and improve further upon the plots. Derivations and methodology are described in Bladen (2022) <https://digitalcommons.usu.edu/etd/8587/>.

Authors:Kelvyn Bladen [aut, cre], D. Richard Cutler [aut]

randomForestVIP_0.1.3.9000.tar.gz
randomForestVIP_0.1.3.9000.zip(r-4.5)randomForestVIP_0.1.3.9000.zip(r-4.4)randomForestVIP_0.1.3.9000.zip(r-4.3)
randomForestVIP_0.1.3.9000.tgz(r-4.4-any)randomForestVIP_0.1.3.9000.tgz(r-4.3-any)
randomForestVIP_0.1.3.9000.tar.gz(r-4.5-noble)randomForestVIP_0.1.3.9000.tar.gz(r-4.4-noble)
randomForestVIP_0.1.3.9000.tgz(r-4.4-emscripten)randomForestVIP_0.1.3.9000.tgz(r-4.3-emscripten)
randomForestVIP.pdf |randomForestVIP.html
randomForestVIP/json (API)

# Install 'randomForestVIP' in R:
install.packages('randomForestVIP', repos = c('https://kelvynbladen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kelvynbladen/randomforestvip/issues

Datasets:
  • boston - Housing Values in Suburbs of Boston
  • lichen - Lichen data from the Current Vegetation Survey

On CRAN:

3.74 score 11 scripts 598 downloads 7 exports 139 dependencies

Last updated 12 months agofrom:b9c5f647bc. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-winOKOct 26 2024
R-4.5-linuxOKOct 26 2024
R-4.4-winOKOct 26 2024
R-4.4-macOKOct 26 2024
R-4.3-winOKOct 26 2024
R-4.3-macOKOct 26 2024

Exports:caret_plotggvipmtry_comparemtry_pdp_comparepartial_corpdp_comparerobust_vifs

Dependencies:abindautocogsbackportsbase64encbootbroombslibcachemcallrcarcarDatacaretcheckmateclasscliclockcodetoolscolorspacecowplotcpp11crayondata.tableDerivdiagramdigestdiptestDistributionUtilsdoBydplyre1071evaluatefansifarverfastmapfontawesomeforeachFormulafsfuturefuture.applygbmgenericsggeasyggplot2globalsgluegowergridExtragtablehardhathexbinhighrhmshtmltoolshtmlwidgetsipredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvlme4lubridatemagrittrMASSMatrixMatrixModelsmclustmemoisemgcvmicrobenchmarkmimeminervaminqaModelMetricsmodelrmomentsmunsellnlmenloptrnnetnumDerivparallellypbkrtestpdppillarpkgconfigplyrprettyunitspROCprocessxprodlimprogressprogressrproxypspurrrquantregR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppEigenrecipesreshape2rlangrmarkdownrpartsassscalesshapeSparseMSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetinytextrelliscopejstzdbutf8vctrsviridisLitewebshotwithrxfunyaml

randomForestVIP Vignette

Rendered fromVignette.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2023-07-14
Started: 2023-06-26